百年清华

张钹院士:人工智能当前最大问题,不可解释和不可理解

2017-06-01 | 黄海华 | 来源 上观新闻2017-5-30 |

当前以大数据与深度学习为基础的人工智能存在的最大问题是:不可解释和不可理解,就事论事,缺乏推广能力,遇到新的情况一筹莫展。

张钹,1935年3月生,福建福清人。计算机科学与技术专家,中国科学院院士。1953年考入清华大学,入校时就读于电机系电机电器专业,1956年因建设新专业需要,转读自动控制,两年后作为国家第一批自动控制专业的优秀毕业生留校任教。2015年获得2014 CCF终身成就奖。

这是一场没有悬念的比赛。5月27日,中国棋手柯洁与人工智能AlphaGo展开三番棋比赛的终局对决。历经3个多小时的对弈后,柯洁投子认输。至此,柯洁连输三局完败。

这场比赛在很多人看来,在科学价值层面已经失去看点。因为,人类在某些方面不如人工智能早已不新鲜,倒是未来人工智能发展中的新挑战也许更值得关注。

人工智能有哪些问题需要解决?未来发展趋势如何?本报记者专访了中国科学院院士、清华大学教授张钹,共同探寻人工智能接下来的种种可能。

人工智能为何近些年大显身手?

人工智能(ArtificialIntelligence),英文缩写为AI。从1956年的美国达特茅斯会议算起,明确提出人工智能的概念并开始科学与技术的研究已有61年。

张钹院士从1978年就开始研究人工智能,在他看来,人工智能实际上是让计算机模仿人类的三种功能。第一种是模仿理性思考,包括推理、决策和规划等,属于人类的高级智能,或者叫逻辑思维。第二项是模仿感知,对周围环境的感知,包括视觉、听觉、触觉等。第三项是模仿动作,包括人类手、脚和其它动物的动作。此外,情感、灵感和创造性等也在研究之列,但相对来讲,进展要小一些。

人工智能模拟大脑神经元网络的某些工作机理,即人工神经网络(ANN),早在上世纪60年代就问世了,为何近些年才开始大显身手?这主要取决于以下三个要素有了长足进步:第一、多层神经网络(深度网)与其相应的有效学习算法,即深度学习算法;第二、大数据;第三、计算资源(计算能力的提高)。

最初并没有把AlphaGo放在眼里

由于围棋的复杂度远比象棋高,因此这两种棋类下棋的方法有本质的区别。下象棋与下其他棋类一样,靠的是推理、预测,即往前看几步。围棋由于复杂度太高,不可能依靠推理与预测,主要靠“直觉”,即“棋感”与经验。由于过去大家没有认识到这种区别,采用编写象棋程序的同样方法来编制围棋程序,其结果是围棋程序的下棋水平很低,至多达到业余4-5段的水平,根本不是职业围棋手的对手。这一点许多围棋手都有这个体验,因此最初大家并没有把AlphaGo放在眼里,这是完全可以理解的。

AlphaGo抛弃了传统下棋程序的编程方法,创造性地利用机器学习来获取下棋的经验与直觉。AlphaGo不仅学习了以往围棋大师们已经下过的所有棋局——约几千万棋局,还通过强化学习(自己与自己对弈),学习了更多(几亿个)新棋局。这就意味着,AlphaGo下过的棋是任何一位围棋大师一生下过棋的几百上千倍。由于围棋棋局空间很大(约2x10170),在围棋几千年的历史中人类也只是探索了其中的很少一部分,AlphaGo利用计算机的超强计算能力,不仅把人类已经探索过的空间加以优化,而且还探索了新的空间(即新的棋局)。正由于此,人类棋手在AlphaGo面前才显得那样被动,许多情况下都不知道是怎么输的。这也是围棋的魅力所在——毫无止境的探索。

人工智能打桥牌不如人类

张钹院士认为,目前大家对AlphaGo战胜人类棋手这件事有着各种不同的反应,惊讶、崇拜、愤怒、不服气等等,这些都是过度的反应。其实,研究AlphaGo不是为了编制一个围棋程序来代替人类棋手,来颠覆围棋运动,而是以“围棋”为平台,研究人工智能解决这类问题的方法以及可能达到的水平。因此研制AlphaGo的成功只是证明,人工智能在解决以下类型问题时,不管问题多么复杂,都可能做到甚至超过人类的水平。

这类问题的特点是:(1)有充足的数据(或知识),(2)完全信息,(3)确定性,(4)单领域。这类问题除围棋之外,还包括语音识别、人脸识别和图像识别等,其中有一些问题(如围棋)对人类来讲虽然很困难,但对于高速的计算机却是比较容易的。不过,当一个问题不满足上述4个条件中的任何一个(或几个)时,对计算机来讲就变成十分困难的了,而这些问题对于人类来讲反而相对比较容易。比如打桥牌(不完全信息博弈),无人车(不确定性,不完全信息和多领域),自然语言理解(多领域)等。在这些问题上,计算机则比人类差距很大。这就告诉我们机器智能与人类智能之间通常不是互相排斥和互相替代,而是互补的。

解决围棋只是人工智能往前迈进了一步,许多更困难的问题等待人工智能去解决。当前以大数据与深度学习为基础的人工智能存在的最大问题是:不可解释和不可理解,就事论事,缺乏推广能力,遇到新的情况一筹莫展。因此当面对动态变化的环境,信息不完全,存在干扰与虚假信息时,人工智能系统的性能就会显著下降。此外,这样的人工智能系统由于不可理解,无法实现人机交互,无法与人类协同工作与和谐相处。解决这些问题的困难很大,人工智能发展的道路还很长,机器智能达到适应动态变化环境的能力还很遥远。


相关新闻

  • 132018.11

    张钹院士:从少年郎到白发翁,水木清华60载,智能人生谱华章

    身为中国人工智能事业的元老级人物,中国科学院院士张钹从1978年就开始研究人工智能,为中国人工智能奉献了自己的科研生涯。即使已经年过八旬,但他依旧活跃....

  • 132018.12

    张钹院士:为人工智能和大数据产业化及产业创新做出更大贡献!

    ——在清华校友总会AI大数据专委会第一届理事会上的讲话

  • 062023.12

    中国工程院院士、中国人工智能学会副理事长王恩东:创新一定要敢于直面问题

    这些年,我们为什么越来越频繁提到创新?因为只有在原始创新上持续发力,在基础理论方法上有所突破,我们才能摆脱对国外的依赖,才能在新领域新赛道上跑出好成绩。没有“从0到1”的原创性突破,高水平科技自立自强就是无源之水、无本之木。当前,国际科技竞争向基础研究竞争前移,开辟新领域、提出新理论、发展新方法的重大开创性原始创新,已成为国际科技竞争的制高点。唯有依靠基础研究的高质量发展,在新领域新赛道推动关键...

  • 252015.01
  • 102022.06

    朱高峰院士:“东数西算”不可忽视的两个问题

    今年2月,国家发展改革委等部门联合印发文件,同意在京津冀等8地启动建设国家算力枢纽节点,并规划了张家口集群等10个国家数据中心集群。至此,“东数西算”工程正式全面启动。“东数西算”有了总体布局设计并开始行动。因此,有必要对其概念内涵予以清晰科学的理解,以免再现一哄而起的局面。“东数西算”属于信息领域范畴,目标是形成一张算力网。当前我国已建成相当发达的现代信息网,比如通信网、互联网,且形态、技术手段...

  • 252020.08

    旷视研究院员工周而进:让人工智能成为解决问题的日常工具

    生于文学世家却志在计算机科学,初三“保送”清华,高二夺得 NOI 金牌,高三拿下 IOI 金牌,放弃清华姚班,一心进入电子工程系研究计算机底层硬件,大....

  • 282024.04

    打造自主的“AI顶尖人才和原始创新基座”︱清华大学成立人工智能学院

    4月27日,在清华大学113周年校庆到来之际,清华大学成立人工智能学院,聚焦“人工智能核心基础理论与架构”和“人工智能+X”两个重点方向,以高定位和新机制建设中国自主的“AI顶尖人才和原始创新基座”,为实现高水平科技自立自强提供有力支撑。大会现场北京市委副书记、市长殷勇,清华大学党委书记邱勇出席大会并讲话。清华大学校长李路明宣读人工智能学院成立决定。中央网信办副主任、国家网信办副主任王崧,科技部党组成员...

  • 012022.04

    人工智能未来 — 发现、理解与创造

    如果您无法在线浏览此 PDF 文件,则可以下载免费小巧的 福昕(Foxit) PDF 阅读器,安装后即可在线浏览 或下载免费的 Adobe Reader PDF 阅读器,安装后即可在线浏览 或下载此 PDF 文

  • 102020.07

    图灵奖得主姚期智:人工智能绝对是一个跨学科的行业

    7月9日,世界人工智能大会在上海如期召开。在开幕式上,中国第一位也是目前唯一一位图灵奖获得者,中国科学院院士姚期智发表了《人工智能理论的新方向》的主题....

  • 112023.05

    自动化系人工智能与智能系统校友论坛举行

    4月29日,清华大学自动化系以“人工智能与智能系统”为主题的校友论坛通过线上线下相结合的方式举办。清华大学自动化系主任、清华校友总会自动化系分会会长张涛,自动化系党委副书记、校友分会副会长兼秘书长古槿,自动化系副主任、校友分会副会长李清出席论坛。论坛由古槿主持。张涛致辞张涛介绍了近年来自动化系师生取得的重要科研成果,分享了自动化系在智能无人系统、工业智能、智慧医疗与生物信息、脑智能与机器智能四个学...